
AutoCodeRover: Autonomous Program Improvement

Yuntong Zhang
National University of Singapore

yuntong@comp.nus.edu.sg

Haifeng Ruan
National University of Singapore

hruan@comp.nus.edu.sg

Zhiyu Fan
National University of Singapore

zhiyufan@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore

abhik@comp.nus.edu.sg

Abstract

Researchers have made signi�cant progress in automating the soft-

ware development process in the past decades. Automated tech-

niques for issue summarization, bug reproduction, fault localiza-

tion, and program repair have been built to ease the workload of

developers. Recent progress in Large Language Models (LLMs) has

signi�cantly impacted the development process, where developers

can use LLM-based programming assistants to achieve automated

coding. Nevertheless, software engineering involves the process

of program improvement apart from coding, speci�cally to enable

software maintenance (e.g. program repair to �x bugs) and software

evolution (e.g. feature additions). In this paper, we propose an auto-

mated approach for solving Github issues to autonomously achieve

program improvement. In our approach called AutoCodeRover,

LLMs are combined with sophisticated code search capabilities, ul-

timately leading to a program modi�cation or patch. In contrast to

recent LLM agent approaches from AI researchers and practitioners,

our outlook is more software engineering oriented. We work on a

program representation (abstract syntax tree) as opposed to view-

ing a software project as a mere collection of �les. Our code search

exploits the program structure in the form of classes/methods to en-

hance LLM’s understanding of the issue’s root cause, and e�ectively

retrieve a context via iterative search. The use of spectrum-based

fault localization using tests, further sharpens the context, as long

as a test-suite is available. Experiments on the recently proposed

SWE-bench-lite (300 real-life Github issues) show increased e�cacy

in solving Github issues (19% on SWE-bench-lite), which is higher

than the e�cacy of the recently reported Swe-agent. Interestingly,

our approach resolved 57 GitHub issues in about 4 minutes each

(pass@1), whereas developers spent more than 2.68 days on av-

erage. In addition, AutoCodeRover achieved this e�cacy with

signi�cantly lower cost (on average, $0.43 USD), compared to other

baselines.We posit that our work�ow enables autonomous software

engineering, where, in future, auto-generated code from LLMs can

be autonomously improved.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680384

CCS Concepts

• Software and its engineering→ Automatic programming;

Maintaining software; Software testing and debugging; •Com-

puting methodologies→ Natural language processing.

Keywords

large language model, automatic program repair, autonomous soft-

ware engineering, autonomous software improvement

ACM Reference Format:

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024.

AutoCodeRover: Autonomous Program Improvement. In Proceedings of

the 33rd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.3680384

1 Beyond Automatic Programming

Automating software engineering tasks has long been a vision

among software engineering researchers and practitioners. One of

the key challenges has been the handling of ambiguous natural lan-

guage requirements, in the process of automatic programming. In

addition, there has been progress in some other software engineer-

ing activities such as automated test generation [5, 7], automated

program repair [13], and so on.

Recent progress in large language models (LLMs) and the ap-

pearance of tools like Github Copilot [32] hold signi�cant promise

in automatic programming. This progress immediately raises the

question of whether such automatically generated code can be

trusted to be integrated into software projects, and if not, what

improvements to the technology are needed. One possibility is to

automatically repair generated code to achieve trust. This brings

out the importance of automating program repair tasks towards

achieving the vision of autonomous software engineering.

Given this motivation of automating program repair, and the

large number of hours developers often spend manually �xing

bugs, we looked into the possibility of fully autonomous program

improvement. Speci�cally, we feel that bug �xing and feature addi-

tion are the two key categories of tasks that a development team

may focus on when maintaining an existing software project. To

achieve this goal, we proposed an approach that augments LLM

with context knowledge from the code repository. We call our tool

AutoCodeRover.

Technically our solution works as follows. Given a real-life

GitHub issue, LLM �rst analyzes the attached natural language de-

scription to extract keywords that may represent �les/classes/meth-

ods/code snippets in the codebase. Once these keywords are identi-

�ed, we employ a strati�ed strategy for the LLM agent to retrieve

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1592

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0005-1664-7110
https://orcid.org/0009-0008-1080-4770
https://orcid.org/0000-0002-8165-9493
https://orcid.org/0000-0002-7127-1137
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680384&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury

code context by invoking multiple necessary code search APIs

at one time with the keyword combinations as arguments (e.g.,

search_method_in_�le). These code search APIs are running lo-

cally based on AST analysis and are responsible for retrieving code

context such as class signatures and method implementation details

from a particular location in the codebase. By collecting the project

context with code search APIs, LLM re�nes its understanding of

the issue based on the currently available context. Note that our

code context retrieval will proceed in an iterative fashion. The LLM

agent directs the navigation and decides which code search APIs

to use (i.e. where/what to retrieve code) in each iteration based on

the current available context returned from the previous API calls.

AutoCodeRover then enquires whether there is su�cient project

context, and subsequently uses the collected context to derive the

buggy locations. The patch construction is then handled by another

LLM agent which considers the buggy locations as well as all the

context collected so far for those locations.

AutoCodeRover also can leverage debugging techniques such

as spectrum-based fault localization (SBFL) [44] to decide more

precise code search APIs for context retrieval if a test suite ac-

companying the project is available. SBFL primarily considers the

control �ow of the passing and failing tests and assigns a suspi-

ciousness score to the di�erent methods of the program. The LLM

agent may prioritize retrieving context from particular methods

and classes if the fault localization result is provided, e.g., when

a method appears both in the issue description and in the output

of fault localization. In the last step, AutoCodeRover may per-

form patch validation using available tests, to determine whether

the patch produced by AutoCodeRover passes the tests in the

given test-suite. Otherwise, AutoCodeRover will rerun the patch

generation with a retry limit until a correct patch is found.

Contributions. Our contribution lies in the e�ective use of code

search to make software engineering processes like program repair

autonomous. Instead of viewing the codebase as a collection of �les,

we posit AutoCodeRover as an approach that gleans speci�cation

from software structure, which is used to guide the patching. The

code search in AutoCodeRover is a vehicle for inferring speci�-

cation from program structure. We demonstrate this capability by

autonomously solving GitHub issues. We report favorable experi-

mental results on the SWE-bench lite dataset [17]. We achieve 19%

e�cacy on the SWE-bench lite with 300 GitHub issues. Overall,

we see the need to endow a software engineering oriented outlook

to the recent �urry of activity on LLM agents for software engi-

neering, which mostly has only an AI �avor. The angle of software

engineering can be conveyed by the following �ve dimensions.

• We work on program representations (abstract syntax tree or

AST) as opposed to viewing a software project as a collection of

�les. We posit that working on program representations like AST

will be useful in autonomous software engineering work�ows.

• To solve GitHub issues, we focus on code search in a way that

resembles the activity of a human software engineer. So we try

to use the program structure - classes, methods, code snippets

- in searching for relevant code context. This leads to a more

e�ective usage of the context provided to LLM.

• We posit that higher e�cacy of automated repair is more impor-

tant than time e�ciency, as long as the time is within a threshold.

It is well-known in empirical software engineering research that

time limits of 30-60 minutes for automated repair are tolerable,

based on extensive developer surveys in the �eld [31]. We thus

report 19% e�cacy on SWE-bench lite in solving GitHub issues,

within 4 minutes. We can compare this time limit of 4 minutes to

the average time of 2.68 days to �x the GitHub issues manually.

• One should be able to exploit debugging techniques like test-

based fault localization to guide the search for code in resolving

GitHub issues. We show that the use of fault localization in

setting the code context leads to an increase in the e�cacy of

AutoCodeRover in solving GitHub issues.

• Finally, it is also useful to examine how many of the solved

GitHub issues are producing acceptable patches. We study the

patches produced by AutoCodeRover and report that 2/3 of

the autonomously produced patches from AutoCodeRover are

correct and acceptable. We note that this aspect has not been

reported by Devin [24] and SWE-agent [47].

2 Relevant Literature

2.1 Program Repair

Test-suite based automated program repair (APR) has attracted

signi�cant attention in the last decade [13]. These techniques aim

to generate a patch for a buggy program to pass a given test-suite.

APR techniques typically include search-based, semantic-based,

and pattern/learning-based APR. Search-based APR techniques like

GenProg [42] take a buggy program and generate patches using

prede�ned code mutation operators, or search for a patch over

the patch space that passes the given test suite. Semantics-based

APR techniques [28, 30] generate patches by formulating a repair

constraint that needs to be satis�ed based on a given test suite

speci�cation, and then solving the repair constraint to generate

patches. Learning-based APR techniques [26, 38, 48] often train a

deep learning model with large code repositories and are guided by

a speci�c representation of code syntax and semantics to predict

the next tokens that are most likely to be correct patch. There are

also works [23, 29, 39] that tried to leverage GitHub issues and bug

reports to improve APR e�ectiveness.

Recent work [10, 15, 46] have shown the use of LLMs for auto-

mated program repair. This line of work often assumes the buggy

program statements are given (i.e. perfect fault localization assump-

tion) and focuses on constructing APR-speci�c prompts that guide

LLM to generate a patch for the selected buggy program statements

multiple times until a patch that passes all tests is found. The typical

work targets repairing functional [10, 35, 41], type [9] bugs, and

even software vulnerabilities [11, 18, 33] in di�erent languages with

open-source/commercialised models (e.g., CodeT5, ChatGPT, GPT-

4, etc). However, obtaining buggy locations for a large project is an

essential and challenging task in resolving real-life bug reports.

APR techniques have been successfully deployed in industries

for domain-speci�c bug �xing [4, 27, 43]. However, a long-standing

challenge for the APR techniques is to resolve general real-life

software issues from scratch. The above APR techniques rely on

a high-quality test suite which is not always available in the real

world and they do not leverage the valuable natural language spec-

i�cation from the original problem description. To address these

1593

AutoCodeRover: Autonomous Program Improvement ISSTA ’24, September 16–20, 2024, Vienna, Austria

Based on the issue, use the APIs below to get more context:
 - search_class(...).
 - search_method_in_class(...)
 - search_code_in_file(...)
 -
Select necessary APIs. You can use multiple APIs.

We need to understand how the ModelChoiceField and potentially the
ModelMultipleChoiceField classes handle validation and error messages. ...
Typically, Django fields use a clean method for validation.
 1. search_class("ModelChoiceField")
 2. search_class("ModelMultipleChoiceField")
 3. search_method_in_class("clean", "ModelChoiceField")
 4. search_method_in_class("clean", "ModelMultipleChoiceField")

1. Found 1 class with name ModelChoiceField.
 Signature: ... def to_python(): ... def validate(): ...
2. Found 1 class with name ModelMultipleChoiceField.
 Signature: ... def to_python(): ... def clean(): ...
3. Could not find method clean in ModelChoiceField.
4. Found 1 method clean in ModelMultipleChoiceField. Code: ...

- ModelChoiceField class does not have a clean method. It likely uses
 another method like validate or to_python to validate inputs.
- ModelMultipleChoiceField class incorporates the invalid value (%(value)s)
 into the error message. This is not the case for ModelChoiceField, which is
 likely the root of the issue.
- We might modify the validate or to_python method (since clean is not
 directly overwritten) to customize the error message similarly to how
 ModelMultipleChoiceField does.
- Next step: examine validate and to_python methods of ModelChoiceField.

1. search_method_in_class("validate", "ModelChoiceField")
2. search_method_in_class("to_python", "ModelChoiceField")

1. Found 1 method validate in ModelChoiceField. Implementation is: ...
2. Found 1 method to_python in ModelChoiceField. Implementation is:
 def to_python(self, value):
 ...
 raise ValidationError(self.error_messages['invalid_choice'],
 code='invalid_choice')

- validate method simply calls the validate method of its parent class.
- to_python method is responsible for converting the input into a Python object.
 The ValidationError raised in to_python does not include the invalid value
 in the error message (consistent with the issue).
- Proposed solution: Adjust the error message to incorporate the value
 dynamically, similar to how ModelMultipleChoiceField includes %(value)s
 in its error message.

Buggy location:
1. File django/forms/models.py, class ModelChoiceField, method to_python

Here are the code in buggy locations:

Write a patch for the issue, based on the retrieved context.

<file>
 django/forms/models.py, Line 1287
</file>

<patched>
 raise ValidationError(self.error_messages['invalid_choice'] %
 {'value':value}, code='invalid_choice')
</patched>

Issue Description
ModelChoiceField does not provide value of invalid choice when raising Validation Error.
Compared with ChoiceField and others, ModelChoiceField does not show the value of the
invalid choice when raising a validation error. Passing in parameters with the invalid value and
modifying the default error message for the code invalid_choice should fix this.
From source code:
class ModelMultipleChoiceField(ModelChoiceField):
 ... 'invalid_choice': _('Select a valid choice. %(value)s is not one of the available choices.'), ...
class ModelChoiceField(ChoiceField):
 ... 'invalid_choice': _('Select a valid choice. That choice is not one of the available choices.'), ...

Step 1

Step 4

Step 2

Step 3

Figure 1: Issue description of django-13933 and AutoCodeRover’s work�ow on it.

challenges and achieve autonomous software engineering, we focus

on resolving GitHub issues from a real-life dataset.

2.2 LLM Agents for SE and Dataset

SWE-bench lite [17] is a benchmark that aims to evaluate the capa-

bilities of large language models in resolving end-to-end real-life

software engineering tasks. The benchmark consists of 300 real-life

software engineering task instances collected from the repositories

of 11 popular large Python projects 1 (e.g., django, sympy). Each

SWE-bench lite task instance contains a pair of Github issue and

corresponding pull requests. The GitHub issue either reports a bug

to be �xed or requests to implement new features. The pull request

includes the code changes made by human developers to resolve the

issue and test cases that prevent the issue. Unlike traditional code

generation tasks in HumanEval [8] and MBPP [25] benchmark,

resolving a SWE-bench lite instance is particularly challenging

because it requires automatically generating code changes that

address the problem in a GitHub issue for a matured large code

repository based only on the issue description. More speci�cally,

the process may involve a series of complex tasks like reasoning

the target bug location across �les in the code repository, analyz-

ing the root cause of the issue, proposing bug-�xing strategies,

and eventually writing a patch that passes all the test cases added

in the pull request. There are a few primary attempts at tackling

tasks in SWE-bench lite. Devin [24] is named the �rst AI software

1https://www.swebench.com/index.html

engineer that can solve various software engineering tasks, includ-

ing building a project from scratch, bug-�xing/feature-addition for

existing projects. However, it is a close-sourced commercial tool,

and its details are not available. Swe-agent [47] is a concurrent

work against AutoCodeRover. It designed an agent-computer in-

terface (ACI) that allows LLM agents to execute basic �le operations

via shell commands to achieve interaction between the LLM en-

gine and a software repository. Compared to Swe-agent, we posit

AutoCodeRover as an approach that gleans speci�cation from

software structure, which is used to guide the patching. Instead of

viewing the codebase as a collection of �les.

3 Motivating Example

In this section, we illustrate how our tool AutoCodeRover can

collect code context and generate a patch from an issue description

and the corresponding project code-base. We show an example

of a feature addition task. Figure 1 demonstrates the work�ow

of AutoCodeRover on an issue submitted to the Django issue

tracker2. This issue is classi�ed as “New feature” in the issue tracker,

and is included in SWE-bench lite with the id “django-13933”. The

�rst part of Figure 1 shows the issue description (the code part is

simpli�ed for brevity). This issue requests adding support to the

ModelChoiceField class, so that it “shows the value of the invalid

choice when raising a validation error”.

With this issue description, AutoCodeRover operates in two

stages - context retrieval (Step 1-3 in Figure 1) and patch generation

2https://code.djangoproject.com/ticket/32347

1594

https://github.com/django/django
https://github.com/sympy/sympy
https://code.djangoproject.com/ticket/32347

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury

"Collect context by
invoking APIs." API invocations

"Results of the
invocations: ..." Context analysis

sufficient?

No

Buggy
locations

Yes

"Code at buggy
location: ...

Please write patch."

Patch generation Can be
applied?

"Patch cannot be
applied to program.
Please try again."

No

Final patch
Yes

Context retrieval stage Patch generatation stage

Problem
Statement

Figure 2: Overall work�ow of AutoCodeRover.

""" AutoCodeRover patch. """

except (ValueError , TypeError , self.queryset.model.DoesNotExist):

- raise ValidationError(self.error_messages['invalid_choice '],

- code='invalid_choice ')

+ % Include the invalid value in the error message

+ raise ValidationError(

+ self.error_messages['invalid_choice '] % {'value ': value},

+ code='invalid_choice ')

""" Developer patch. """

except (ValueError , TypeError , self.queryset.model.DoesNotExist):

- raise ValidationError(self.error_messages['invalid_choice '],

- code='invalid_choice ')

+ raise ValidationError(

+ self.error_messages['invalid_choice '],

+ code='invalid_choice ',

+ params ={'value ': value},)

Figure 3: AutoCodeRover and developer patch for Django-

13933.

(Step 4). First, a context retrieval LLM agent is instructed to collect

the relevant code context related to this issue, from a local copy

of the Django project codebase. This retrieval is achieved by in-

ferring relevant names (e.g. ModelChoiceField) and searching for

them in the Abstract Syntax Tree (AST) of the project. A set of re-

trieval APIs are provided to the agent. In Step 1, the agent identi�es

the classes ModelChoiceField and ModelMultipleChoiceField

might be relevant based on the issue description, and infers that a

cleanmethod might be also of interest for validation-related issues.

It then invokes the search_class and search_method_in_class

APIs to retrieve more information about them.

In Step 2, API invocations return the signature of the classes and

implementation of the methods found. Results of invocation #3 re-

veals the absence of method clean in the class ModelChoiceField,

which helps to re�ne the agent’s understanding from Step 1. The re-

turned class signature from invocation #1 also reveals twomore rele-

vantmethods to_python and validate, whichwere notmentioned

in the issue description. This suggests the retrieval should be per-

formed iteratively in multiple steps, so that results from a previous

search can become arguments of the following search. In this exam-

ple, the agent then iteratively invokes search_method_in_class

on the two newly revealed methods. Furthermore, by referenc-

ing results from multiple invocations, the agent can infer that

ModelMultipleChoiceField incorporates the invalid value into

the message with %(value)s, and methods in ModelChoiceField

can be modi�ed similarly to ModelMultipleChoiceField.

In Step 3, the agent receives the implementation of validate and

to_pythonmethods. Among the twomethods, it selects to_python

to be the more suitable place to make changes, since to_python

raises the relevent exception and does not include the invalid value.

At this point, the retrieval agent deems the collected code context

as su�cient for understanding the issue and drafting the patch. The

identi�ed buggy location, together with the gathered context and

analysis so far, is passed to another patch generation agent. This

agent is instructed to write patches following the format described

in Step 4 (see yellow box) of Figure 2. In Step 4, a patch is written to

allow a value to be integrated into the error message, by utilizing

%-formatting in Python. Figure 3 shows the patch generated by

AutoCodeRover and the developer. Although written in a di�erent

way compared to the developer patch, this patch achieves similar

e�ect and passes the developer provided test-suite for this issue.

4 AI Program Improvement Framework

In this section, we discuss the design of AutoCodeRover. Au-

toCodeRover is a system incorporating AI agents for program

improvement tasks in large software projects. AutoCodeRover

is designed to work in a realistic software development lifecycle,

in which users submit issue reports to a software repository de-

scribing a bug, and the project maintainers craft a patch to resolve

the issue. With a submitted issue, AutoCodeRover autonomously

analyzes the submitted issue, retrieves the relevant code context in

the software project, and generates a patch. This patch can then be

vetted by human developers. If such a tool can automatically handle

a certain percentage of the issues awaiting developers’ attention,

manual e�orts are reduced.

4.1 Overview

We �rst describe the overall stages AutoCodeRover operates in,

and will proceed in more details in the rest of this section. The

overall work�ow of AutoCodeRover is shown in Figure 2. Au-

toCodeRover takes in as input a problem statement % of the issue

to be resolved, and a codebase � of the corresponding software

project. This problem statement % contains the title and descrip-

tion of the issue, as shown in Section 3. From a problem statement

written in natural language, AutoCodeRover analyzes the require-

ment from it and proceeds in two main stages, which are context

retrieval and patch generation.

In the context retrieval stage, AutoCodeRover employs an LLM

agent to navigate through a potentially large codebase � and ex-

tract the relevant code snippets relevant to % . This navigation is

facilitated by a set of context retrieval APIs (Section 4.2), which

enables an LLM to retrieve information about the project (e.g. class

1595

AutoCodeRover: Autonomous Program Improvement ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: List of Context Retrieval APIs.

API name Description Output

search_class (cls) Search for class cls in the codebase. Signature of the searched class.

search_class_in_�le (cls, f) Search for class cls in �le f. Signature of the searched class.

search_method (m) Search for method m in the codebase. Implementation of the searched method.

search_method_in_class (m, cls) Search for method m in class cls. Implementation of the searched method.

search_method_in_�le (m, f) Search for method m in �le f. Implementation of the searched method.

search_code (c) Search for code snippet c in the codebase. +/- 3 lines of the searched snippet c.

search_code_in_�le (c, f) Search for code snippet c in �le f. +/- 3 lines of the searched snippet c.

signatures) and actual code snippets (e.g. method implementations).

The context retrieval agent directs this navigation, and decides

which retrieval APIs to use based on the current available context.

In order to make the LLM-directed navigation more “controlled”, we

devise a strati�ed stategy of invoking the retrieval APIs (Section 4.3).

This strati�ed strategy instructs the LLM to only invoke necessary

retrieval APIs based on the available information, and iteratively

changes the set of retrieval APIs used when more code-related

context are returned from the previous API calls.

Once the context retrieval agent has gathered su�cient context

about the issue, AutoCodeRover proceeds to the patch generation

stage (Section 4.5). In this stage, AutoCodeRover employs another

LLM agent to extract more precise code snippets from the retrieved

context, and craft a patch based on the extracted code snippets. This

patch generation agent is instructed to craft a patch in a speci�c

format, and if the produced patch does not follow the format spec-

i�cation or cannot be applied to the original codebase, the agent

enters a retry-loop which terminates after a pre-con�gured number

of attempts. Finally,AutoCodeRover outputs a patch that attempts

to resolve the original issue.

We note that the work�ow of AutoCodeRover discussed so far

only requires the problem statement % and codebase � as input,

and do not require any program speci�cations such as testcases.

However, when testcases are available (e.g. provided by develop-

ers or generated from another tool), execution-based information

and program analysis techniques can be integrated into the Au-

toCodeRover framework (Section 4.4). For example, statistical

fault localization [44] tool can be used to reveal more relevant

methods beyond those mentioned in the problem statement. The

additionally revealed code context can thereby in�uence the set of

retrieval APIs invoked in the context retrieval stage. Moreover, with

testcases available, the patch generation agent can employ an addi-

tional patch validation step in its retry-loop when crafting a patch.

In the remainder of this section, we discuss in greater detail the

components of AutoCodeRover and their design considerations.

4.2 Context Retrieval APIs

In the context retrieval stage, the basic components are a set of APIs

which an LLM agent can use to gather relevant code context and

snippets from the codebase. For typical software project issues, we

observe that users often mention some “hints” on which part of the

codebase is relevant. These hints can be the names of the relevant

methods, classes, or �les, and sometimes also contain short code

snippets. Although these hints may not directly point to the precise

location for code modi�cation, they often reveal code context in

(Issue sympy-12481)
Permutation constructor fails with non-disjoint cycles.

Calling Permutation([[0,1],[0,1]]) raises a ValueError instead of constructing
the identity permutation. If the cycles passed in are non-disjoint, they should be
applied in left-to-right order and the resulting permutation should be returned.

This should be easy to compute. I don't see a reason why non-disjoint cycles
should be forbidden.

(Issue django-13230)
Add support for item_comments to syndication framework.

Add comments argument to feed.add_item() in syndication.views so that
item_comments can be defined directly without having to take the detour via
item_extra_kwargs.
Additionally, comments is already explicitly mentioned in the feedparser, but
not implemented in the view.

Figure 4: Issue description of sympy-12481 and django-13230.

“Hints” are highlighted.

the project that is relevant to the current issue. Figure 4 illustrates

two real-world issues submitted to the sympy and django projects,

respectively, and the “hints” are highlighted. In sympy-12481, the

class Permutation is mentioned twice; in django-13230, multiple

hints are mentioned, such as code snippet feed.add_item(), pack-

age path syndication.views, method name item_extra_kwargs

and etc. Based on the type of project and code related hints, we

design a set of APIs for an LLM agent to retrieve code context from

these hints. The current set of APIs in AutoCodeRover and their

outputs are shown in Table 1. Once invoked by the LLM agent,

the retrieval APIs search for classes, methods and code snippets in

the code-base, and return the results back to the agent. To avoid

forming very lengthy code context that creates distraction during

patch generation, we return only necessary information as API

outputs. For example, since the complete de�nition of a class can

be lengthy in large projects, we only return signature of the class as

output for search_class and search_class_in_file. Returning

the signature to shorten cntext, is a better approach than cutting o�

the context at a certain bound. Upon receiving the class signature,

the agent could then invoke another API to search for the relevant

methods / snippets inside the class.

Interfacing with LLM. For the LLM agent to invoke the context

retrieval APIs, the description and expected output of them are

presented to it as part of prompt. When the agent decides to invoke

1596

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury

Stratum 1

Problem
Statement search_method(methodA)

search_code_in_file
(code_str, fileA)

search_class(classA)

<Project context 1>
Context not sufficient. search_method_in_class

(methodB, classA)

search_class(classB)

Stratum 2

... search_method_in_class
(methodC, classB)

Stratum k

<Project context k>
Context sufficient.

Buggy location is:
1. ClassA.methodB
2.ClassB.methodC

Figure 5: Strati�ed search with retrieval APIs for context gathering.

a set of retrieval APIs, it responds with the list of API call names

and the corresponding arguments. These retrieval API requests are

processed locally by parsing a local codebase of the project into

AST and searching over it. Results of locally executing these APIs

are returned to the agent, forming the code context.

4.3 Strati�ed Context Search

The set of context retrieval APIs listed in Table 1 serves as build-

ing blocks for searching relevant code context. With the context

retrieval APIs and the LLM-identi�ed keyword “hints” from the

problem statement, a set of possible API invocations can be derived

by using the identi�ed keywords as API parameters. We discuss

a few observations on using these API invocations to gather code

context, and propose a strati�ed context retrieval process.

Our �rst observation is that the context retrieval should not

be restricted to a single API invocation. For example, in the issue

django-13230 mentioned in Figure 4, if the retrieval starts from

the invocation search_method("add_item"), the implementation

of method add_item can be considered by the LLM agent as a

su�cient context, since it appears to be relevant to the problem

statement. However, searching from only one method can lead to

incomplete context for the agent to reason about root cause of the

problem. On the other hand, if all API invocations are executed at

once, a large code context can be retrieved, especially when the

problem statement mentions many class and method names. This

large code context can be di�cult for an LLM to comprehend, or

may even exceed its context window.

The second observation is that some of the API invocation results

providemore elements to build new possible API invocations, which

means the process of invoking retrieval APIs should be iterative.

For example, the result of a search_class call returns the method

signatures within the searched class, and an LLM can iteratively

invoke method-related APIs afterwards.

With these two observations, we propose a strati�ed search

process for invoking context retrieval APIs, as illustrated in Figure 5.

From a problem statement, strati�ed search iteratively invokes

retrieval APIs to gather project code context, and �nally outputs a

list of potentially buggy locations to be �xed. In each stratum, we

prompt the LLM agent to select a set of necessary API invocations,

based on the current context. In stratum 1, the current context only

contains the problem statement; in the following strata, the context

contains both the problem statement and the code searched so far.

By allowing LLM to select more than one API invocations and also

instructing it to only select the necessary ones, we make the best

use of the context, building what we deem an optimal context.

After the API invocations in a stratum are executed, the newly

retrieved code snippets are added to the current context. The LLM

agent is then prompted to analyze whether the current context is

su�cient for understanding the issue, thereby deciding whether (a)

we continue the iterative search process, or (b) we decide on the

buggy locations which will be considered for �xing.

4.4 Analysis-Augmented Context Retrieval

We also investigate how program debugging techniques can aug-

ment our work�ow. Speci�cally, we integrate the Spectrum-based

Fault Localization (SBFL) analysis into AutoCodeRover to study

the e�ect of such a test-based dynamic analysis. We make a test-

suite) available to AutoCodeRover, in addition to the problem

statement % and codebase � .

Spectrum-based Fault Localization. The goal of SBFL is to identify

the location of software faults [45]. Given a test-suite) containing

both passing and failing tests, SBFL considers control-�ow di�er-

ences in the passing and failing test executions, and assigns a suspi-

ciousness score to di�erent program locations. This suspiciousness

score can be computed with various metrics such as Tarantula [21]

and Ochiai [3]. Program elements (e.g. statements/basic blocks)

with the highest suspiciousness scores are identi�ed as likely fault

locations. SBFL can be performed at di�erent granularities of pro-

gram elements, such as statements or basic blocks. Since the LLM

can process reasonably long code snippets, we use method-level

SBFL in AutoCodeRover. Given an test-suite, SBFL can be used to

directly output a few program locations to be repaired. However, the

accuracy of SBFL highly relies on the quality of the test-suite [22]

- since the SBFL results are e�ectively an abstraction of the dif-

ferential of control �ows between passing tests and failing tests.

Therefore, instead of replacing the strati�ed context retrieval with

SBFL, we use the SBFL identi�ed methods to augment the search

process. Before AutoCodeRover enters the context retrieval stage,

we provide the SBFL-identi�ed methods to the LLM agent as “re-

sults from an external analysis tool that identi�es suspicous code”.

The main role of SBFL-identi�ed methods is to reveal more “hints”

on relevant classes and methods beyond those mentioned in the

problem statement. The LLM agent can then use the context re-

trieval APIs to examine these methods. Since the SBFL-identi�ed

methods are presented to the agent together with the problem

statements, the agent can then cross-reference between these two

sources of information. For example, if one of the SBFL-identi�ed

method names is more closly related to the problem statement, the

LLM is more likely to invoke the search_method API on this name.

We will demonstrate this observation in Section 6.2.

1597

AutoCodeRover: Autonomous Program Improvement ISSTA ’24, September 16–20, 2024, Vienna, Austria

4.5 Patch Generation

In the patch generation stage, AutoCodeRover employs a patch

generation agent to use the collected code context to write a patch

for the problem statement. This agent is given the problem state-

ment, the identi�ed buggy locations/methods, and the history of

context retrieval, including the invoked APIs, the API results, as

well as the previous analysis on the code context made by the

context retrieval agent.

As a �rst step, the patch generation agent retrieves the precise

code snippets at the buggy locations from the codebase. Based

on the precise code snippets and other relevant code context, the

agent enters a retry-loop of generating patches. If a generated patch

does not follow the speci�ed patch format or could not be applied

syntactically to the original program, the agent is prompted to retry.

We also employs a linter to indentify Python-speci�c syntax issues

such as indentation errors in this retry-loop. The agent is allowed to

retry up to a pre-con�gured attempt limits (currently set to three),

after which the best patch so far is returned as output.

5 Experiment Setup

To evaluate the capabilities of AutoCodeRover in resolving real-

life software issues, we answer the following research questions.

RQ1: To what extent can AutoCodeRover automate software

issues like human developers?

RQ2: Can existing debugging / analysis techniques assist

AutoCodeRover?

RQ3: What are the challenges for AutoCodeRover and fully au-

tomated program improvement in future?

Benchmark. We evaluate AutoCodeRover in recently proposed

benchmarks SWE-bench and SWE-bench lite [17], comprising 2294

and 300 real-life GitHub issues, respectively. The only input is the

natural language description in the original GitHub issue and its

corresponding buggy codebase. Details of SWE-bench and SWE-

bench lite appear in Section 2.2.

Baseline and Evaluation Metric. We selected two LLM-based

agent systems Devin [24], Swe-agent [47] as baselines and com-

pare their performance against AutoCodeRover. We directly com-

pare AutoCodeRover with Swe-agent’s original results as it is

publicly available at GitHub3. In contrast to Swe-agent, we do not

have access to Devin, so we take the most relevant reported result

from their technical report [40]. To avoid the natural randomness of

LLM, we repeat our experiments three times. We report the result

with the AutoCodeRover @1 and AutoCodeRover @3 anno-

tations (i.e. pass@1, pass@3 metrics [8] respectively). We use (1)

the percentage of resolved instances, (2) average time cost, and (3)

average token cost to evaluate the e�ectiveness of the tools. These

evaluation metrics represent overall e�ectiveness, time e�ciency,

and economic e�cacy in resolving real-world GitHub issues.

Implementation and Parameters. We use the state-of-the-art Ope-

nAI GPT-4 (gpt-4-0125-preview) as foundation inference model

for AutoCodeRover. In AutoCodeRover, the GPT-4 model is

responsible for selecting search APIs to retrieve codebase context,

3https://github.com/princeton-nlp/SWE-agent

re�ning the issue description, and writing a �nal patch. For param-

eters of GPT-4, we set a low temperature=0.2, max_tokens=1024

to produce relatively deterministic results and enable su�cient

reasoning length for AutoCodeRover, and all other parameters

remain as per default. AutoCodeRover terminates either a patch

is generated or the context retrieval stage repeats ten times. Exper-

iment results and artifacts for AutoCodeRover can be found at

https://github.com/nus-apr/auto-code-rover.

System Environment. All experiments are conducted on an x86_64

Linux server with Ubuntu 20.04 installed. The correctness of gen-

erated patches by AutoCodeRover is evaluated on the o�cial

SWE-bench docker environment.

6 Evaluation

6.1 RQ1: Overall E�ectiveness

We �rst measure the overall e�ectiveness of AutoCodeRover

and baselines with the number of resolved task instances in SWE-

bench. With the goal of understanding to what extent the current

AI systems can automatically resolve real-life software issues, the

only inputs we provided are the natural language issue description

and a local code repository checked out at the erroneous version.

We repeated the experiment of AutoCodeRover three times to

avoid randomness and presented the results in pass@1 and pass@3

metrics [8], which are denoted as AutoCodeRover @1 and Au-

toCodeRover@3 respectively. When reporting time and token/-

cost for AutoCodeRover@3, we report the time and cost required

for running each task three times. Since Devin was evaluated on a

random 25% subset of SWE-bench [24], we also report results of Au-

toCodeRover on this subset (we refer to this as “SWE-bench Devin

subset”). Table 2 shows the overall result of AutoCodeRover in

SWE-bench lite, full SWE-bench and SWE-bench Devin subset and

Figure 7 shows a visual e�cacy summary of AutoCodeRover’s

comparison with Swe-agent, Devin.

Results on SWE-bench. The results reported in Table 2 indicate

that in the full SWE-bench, AutoCodeRover @1 resolved 12.42%

task instances with 248 seconds per task, and AutoCodeRover

@3 resolved 17.96% task instances taking a time of 701 seconds per

task, which is at par with 12.47% resolved tasks by the concurrent

work Swe-agent, according to their technical report [47]. We also

performed another round of experiments withAutoCodeRover on

SWE-bench lite (300 instances). AutoCodeRover@1 resolved 19%

task instances in taking an average time of 195 seconds, whereas

Swe-agent resolved 18% task instances. Moreover, we also investi-

gated AutoCodeRover@3 in SWE-bench lite, in which the per-

centage of resolved task instances increased to 26%. The results of

AutoCodeRover @3 in SWE-bench imply that AutoCodeRover

may be complemented by running multiple times, highlighting

the possibility of improving AutoCodeRover with an iterated

generate-and-validate process in the future, if any program speci�-

cation is available.

Comparison with Devin. To compare with Devin, we report Au-

toCodeRover’s result on the 570 task instances (random 25% subset

of SWE-bench) Devin [24] was evaluated on. The results of Devin

1598

https://github.com/nus-apr/auto-code-rover

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury

Table 2: Overall Result of AutoCodeRover and baselines on

full SWE-bench, SWE-bench Devin subset, and SWE-bench

lite. "-" indicates data not available.

Tools Resolved Tasks Avg Time Avg Tokens

Reported result on SWE-bench lite (size=300)

Swe-agent [47] 18.00% (54) - 245k ($2.51)

AutoCodeRover@1 19.00% (57) 195 37k ($0.43)

AutoCodeRover@3 26.00% (78) 520 112k ($1.30)

ACR-sb� 22.00% (66) 250 40k ($0.47)

Reported result on full SWE-bench (size=2294)

Swe-agent [47] 12.47% (286) - 240k ($2.46)

AutoCodeRover@1 12.42% (285) 248 39k ($0.45)

AutoCodeRover@3 17.96% (422) 701 120k ($1.39)

Reported result on SWE-bench Devin subset (size=570)

Swe-agent [47] 13.51% (77) - 234k ($2.40)

Devin [24, 40]4 13.86% (79) > 600 -

AutoCodeRover@1 12.63% (72) 238 37k ($0.42)

AutoCodeRover@3 18.77% (107) 692 117k ($1.36)

are taken from their technical report [40]. In this Devin partic-

ular subset, AutoCodeRover successfully resolved 12.63% task

instances on average in pass@1, and 18.77% of the task instances

in pass@3, which is higher than Devin. Besides, the time taken by

AutoCodeRover is much smaller than Devin.

Detailed Comparison with Swe-agent. In the rest of RQ1, we

compare AutoCodeRover with Swe-agent on SWE-bench lite

using the highlighted AutoCodeRover@1 result. We further an-

alyzed the commonly and uniquely resolved instances between

AutoCodeRover and Swe-agent in Figure 6, and we found that

AutoCodeRover and Swe-agent complement each other in di�er-

ent scenarios.AutoCodeRover uniquely resolved 26 task instances,

which bene�ted from the �ne-grained code context search at the

AST level to precisely locate the bug locations (e.g., django-13401

searches three necessary methods at one time). On the other hand,

the main reason that AutoCodeRover failed on the 23 unique in-

stances resolved by Swe-agent is unimplemented search APIs (e.g.,

search_�le invoked in django-12286). When such unimplemented

APIs are invoked, AutoCodeRover returns an error message to

the LLM, but the LLM may still fail to invoke valid search APIs in

later attempts. This implies more robust search APIs are desired for

future improvement of AutoCodeRover.

Time / Token Cost. Today, the price of invoking state-of-the-art

LLMs such as GPT-4 and Claude-3-Opus are still very expensive.

Hence, we are also interested in assessing the feasibility of deploy-

ing AutoCodeRover in the real world in terms of time and eco-

nomic cost. Figure 7 shows the comparison between task-resolving

success rate and average costs per task for all tools. On average,

AutoCodeRover takes 195 seconds and 37k tokens (equivalent

to 0.43 USD) to resolve one task instance in SWE-bench lite. In

comparison, Swe-agent costs 245k tokens (equivalent to 2.51 USD)

per task instance. The cost of Devin is empty because it is not

4The reported result of Devin is evaluated on a random 25% subset of full SWE-bench

Common:
31

AutoCodeRover
Unique:

23
Unique:

26

SWE-agent

Figure 6: Venn diagrams of resolved tasks instances by Au-

toCodeRover and Swe-agent, on SWE-bench lite.

Figure 7: Task-resolving success rates (%) and average costs

per task in USD of AutoCodeRover and baselines.

Figure 8: The number of resolved tasks and token cost distri-

butions of AutoCodeRover and Swe-agent.

publicly available. When considering the combined three repeti-

tions, AutoCodeRover takes 520 seconds (~8.67 minutes) per task,

which is below the 30-60 minute time limit deemed acceptable by

developers for automated repair tools [31]. Looking into the 78

issues resolved by AutoCodeRover@3 in SWE-bench lite, it costs

on average ~2.68 days for developers to create pull requests for

66 issues, and the other 12 issues take even longer to be closed

by developers (ranging from 34 - 4023 days). The short response

time and signi�cantly low success-rate/cost ratio show the poten-

tial for AutoCodeRover to act as a �rst a�ordable step in future

autonomous bug �xing.

Token Distribution of Resolved Tasks. We dived into the details

of token cost distribution among resolved task instances by Au-

toCodeRover and Swe-agent in Figure 8. The x-axis represents

1599

AutoCodeRover: Autonomous Program Improvement ISSTA ’24, September 16–20, 2024, Vienna, Austria

token cost ranges and the y-axis represents the number of re-

solved tasks. Figure 8 shows that regarding the resolved tasks,

AutoCodeRover is even more token-e�cient. AutoCodeRover

resolved 19 tasks with less than 10k tokens (~0.1 USD) and 31 tasks

between 10k-30k tokens, whereas 66.7% of resolved tasks by Swe-

agent at least requires more than 100k tokens. This implies the

strong capability of strati�ed context retrieval in AutoCodeRover

to fast pinpoint error locations and thus produce �nal patch.

Plausible / Correct patches. Over�tting is a well-known challenge

in the Automated Program Repair community [12]. A program

patch that passes the given test suite is said to be plausible. How-

ever, a plausible patch is deemed as over�tting if it fails to conform to

the developer’s intent. Otherwise, it is deemed as correct. To further

understand the patch quality of AutoCodeRover and baselines,

we manually verify the correctness of task-resolving (i.e. plausible)

patches in SWE-bench lite. Since three repetitions are performed,

we consider a task to have a correct patch if any of the three repeti-

tions produced a correct patch. A plausible patch is correct if it is

semantically equivalent to the developer patch. In this veri�cation

process, at least two authors of the paper cross-validated each patch,

and any disagreement was resolvedwith another author. Overall, on

SWE-bench lite, AutoCodeRover has a correctness rate of 65.4%

(51 correct/78 plausible). We observed that the vast majority of

AutoCodeRover’s over�tting patches (all but 2 of the over�tting

patches) modify the same methods as the developer patches, but the

code modi�cations are wrong. This means that even the over�tting

patches from AutoCodeRover are useful to the developer, since

it helps in localization. The main causes of wrong modi�cations

are the limits of the LLM’s capability or insu�cient context. Apart

from these, we noticed two other interesting causes of over�tting.

One cause is that the issue creator gives a preliminary patch in the

description. This patch can be di�erent from the �nal developer

patch, misleading the LLM. The other interesting cause is that the

issue creator mentioned a case that needs to be handled. The LLM

only �xes this mentioned case, but the developer �xed other similar

cases as well. The two causes indicate that the issue description,

just like test suites, can be an incomplete speci�cation.

6.2 RQ2: E�ect of SBFL

Bug reproduction [6, 20] is a well-studied topic in the software en-

gineering community. It aims to automatically construct input tests

to reproduce bugs that are described in bug reports. Subsequently,

those bug reproduction tests can be used by program analysis tech-

niques to localize the root cause of bugs and generate patches for

APR tools [30].

In this research question, we investigate whether program anal-

ysis techniques with reproducible tests can bene�t the work�ow

of AutoCodeRover, and we use spectrum-based fault localization

(SBFL) as an example. Di�erent from RQ1, here we construct a com-

mon scenario in program repair that AutoCodeRover has access

to the complete test-suite of the target task instance. We use the

developer-written test cases for each task instance (provided in

SWE-bench lite) as the test-suite. To understand the e�ect of SBFL,

we additionally provide SBFL results (top-5 suspicious methods) to

AutoCodeRover at the beginning of the context retrieval stage,

 (WITHOUT SBFL)
 I would use the following APIs:
Stratum 1:.search_class(Product), search_class(Order), ...
Stratum 2: search_code_in_file("class Product(models.Model):",
 "tests/queries/models.py")

Saving parent object after setting on child leads to data loss for parents with
non-numeric primary key.
Given a model with a ForeignKey relation to another model that has a non-auto
CharField as its primary key:
 class Product(model.Model): ...
 class Order(model.Model): ...
If the relation is initialized on the parent with an empty instance ...
Instead of product_id being populated with product.sku, it is set to empty string. ...
<Details at https://code.djangoproject.com/ticket/32332>

 (WITH SBFL)
 An external analysis tool identifies the following code as suspicious:
 1. Method convert_uuidfield_value in class DatabaseOperations
 2. Method _do_update in class Model
 3. Method _prepare_related_fields_for_save in class Model
 4. Method _resolve_output_field in class Value
 5. Method resolve_related_fields in class ForeignKey

 I would use the following APIs:
 1. search_method_in_class (resolve_related_fields, ForeignKey)
 2. search_method_in_class(_prepare_related_fields_for_save, Model)

Figure 9: Issue description and AutoCodeRover’s context

retrieval (w. and w.o. SBFL), on django-13964.

then use the test-suite for patch validation during the patch gener-

ation retry-loop. We denote this setting as ACR-sb� in Table 2. The

patch validation is added as follows: when a patch is generated by

the LLM agent, the test-suite is executed on the patched program;

if the patch fails to pass the complete test-suite, AutoCodeRover

re-invokes the patch generation agent to write a new patch. This

validation loop is con�gured to run three times.

Results. Table 2 shows that, with the additional information pro-

vided by SBFL, the number of resolved tasks increased from 57 to 66

(i.e. 19% to 22% resolved rate on SWE-bench lite). Moreover, when

comparing with task instances resolved in AutoCodeRover on

SWE-bench lite, ACR-sb� still uniquely resolves 7 task instances

that are not resolved in any of the other runs.

Case study. We present a case study on one of the tasks uniquely

resolved byACR-sb�. Figure 9 shows the issue description of django-

139645 and howAutoCodeRover attempts to retrieve code context

with and without SBFL. This issue reported a bug when saving

django models to a database. A simpli�ed version of the issue de-

scription is shown in the �rst part of Figure 9, in which important

parts are highlighted. In this issue, some “hints” (highlighted in red)

mentioned are actually distracting factors for a context retrieval

agent. For example, the Product and Order classes describe how

the bug can be reproduced, and are not classes that cause the bug.

Retrieving code context from these two classes (as shown in Fig-

ure 9 part 2 “WITHOUT SBFL”) does not yield useful results for

forming the context and resolving the issue.

On the other hand, the SBFL component can provide extra hints

for context retrieval agent (as shown in Figure 9 part 3 “WITH

5https://code.djangoproject.com/ticket/32332

1600

https://code.djangoproject.com/ticket/32332

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury

Figure 10: Taxonomy of Challenges in SWE-bench lite.

SBFL”). This is because SBFL considers test execution di�erences,

which in this case revealed a fewmore methods in the codebase that

are related to the issue. With these newly revealed hints, the agent

decides to invoke APIs to search for the resolve_related_fields

and _prepare_related_fields_for_save methods (the latter

method is actually where the developer chose to �x this bug6).

Moreover, we observe that the agent does not solely rely on the

SBFL results to make API invocations. Instead of searching for

methods ranked as top-1 in the SBFL results, the agent searched for

the 3rd and 5th ranked methods. These methods are more related

to some other hints mentioned in the issue description (highlighted

in yellow), and the LLM agent is able to exploit this correlation

between the natural language descriptions and the SBFL analysis

results. With the correct context collected,AutoCodeRover is then

able to draft a patch that resolves this issue. This suggests that an

execution-based analysis can complement the agent work�ow by

revealing information not included in the issue description.

6.3 RQ3: Challenges on real-life tasks

In this research question, we analyze the task instances in SWE-

bench lite that AutoCodeRover failed to resolve (based on the

result of ACR-all in Table 2, without applying SBFL) and provide

a taxonomy of the issue characteristics to highlight the practical

challenges in achieving fully automated software improvement.

Our taxonomy consists of challenges in the fault localization stage

and patch generation stage. Speci�cally, for each task, we analyze

the best run in the three repetitions, and classify each of the 300

tasks into one of the following:

• Success: The generated patch resolves the issue.

• Wrong patch: The generated patch modi�es all methods that are

modi�ed in the developer patch. This means the patch content

is wrong but the patch location(s) are correct.

• Wrong location in correct �le: The generated patch that modi�es

the correct �le but wrong location(s) in the �le.

• Wrong �le: The generated patch modi�es the wrong �le.

• No patch: No patch is generated from the retrieved context.

Figure 10 shows the distribution of the 300 tasks in SWE-bench

lite. AutoCodeRover resolves 26.0% of the issues (“Success”), as

6https://github.com/django/django/pull/13964/�les

mentioned in Section 6.1. The fail-to-resolve cases are included in

the remaining four categories. In 29.3% of the tasks,AutoCodeRover

correctly decided on all patch locations (at the method-level), but

did not produce a correct patch (“Wrong patch”). More �ne-grained

intra-procedural analysis and speci�cation inference techniques

can play a signi�cant role in improving these cases, by providing

the patch generation agent with more method-level repair guid-

ance. In the other three categories, the fault localization could not

pinpoint all the locations to be modi�ed. In 20.0% of the tasks, a

patch is generated in the correct �le, but at wrong methods / classes

in the �le (“Wrong location in correct �le”). In some of these runs,

the developer patch modi�es multiple methods, but the generated

patch did not modify all of them. In the other categories, a patch

could not be generated at the correct �le - in 18.0% of the tasks a

patch is generated in wrong �les, and in 6.7% of the tasks there is

no applicable patch (“Wrong �le” and “No patch”). We manually

inspected some tasks in these two categories, and observed that

their issue description mentions few methods / classes / �les in

the codebase. Instead, some of them contain short examples to re-

produce the issue. For these tasks, one possibility is to generate a

comprehensive test-suite based on the issue description, and then

use execution information of the test-suite (e.g. SBFL) to reveal

suspicious program locations. On the other hand, some other tasks

do not contain reproducible examples and only consist of natural

language descriptions. For these tasks some human involvement

might be helpful. The developers could focus on these tasks.

7 Discussion on Experiments and
Improvements

In this section, we discuss our position on the experiment results

and a few possible directions for future improvements.

Position on Experiment Results. Building autonomous large lan-

guage model agent systems for software engineering tasks is one of

the fastest-growing research �elds now. There were more than 17

attempts from both academia and industries on SWE-bench since

April 2024. We refer the practitioners to the SWE-bench Leader-

board [16] (refer Figure 11) which maintains the latest research

e�ort of various recent agents. The most recent resolve rate on

full SWE-bench leaderboard has reached 19.27% by Factory Code

Droid as of 12th July 2024. In the meantime, AutoCodeRover is

also rapidly progressing towards better performance, the most re-

cent update of AutoCodeRover (18.83% on SWE-bench on 12th

July 2024) can also be found at [2]. However, despite the satisfying

results of AutoCodeRover, it is useful to interpret the results in

the right spirit. Apart from showing good e�cacy with low cost,

AutoCodeRover is signi�cant because of the way it tries to gener-

ate program modi�cations. Thus, we highlight the importance of

gleaning program speci�cations to guide the patching process by

agents as a general guideline for future research.

Issue Reproducer. In Section 4, we described two scenarios that

AutoCodeRover can work on, (1) issue description only, (2) aided

by SBFL when the test suite is available. Although the second sce-

nario is not always practical in real-life software development, the

issue description sometimes contains a concrete reproduction script

1601

https://github.com/django/django/pull/13964/files

AutoCodeRover: Autonomous Program Improvement ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 11: Snapshot of full SWE-bench leaderboard on 12th

July 2024

from the user that reports the bug. In the future, it is possible to de-

sign an LLM agent speci�cally to generate a bug reproduction test

based on the GitHub issue description. The bug reproduction test

can then be used to validate the correctness of AutoCodeRover’s

generated patch and possibly enable a regeneration process if a

patch fails to pass the reproduction test.

Semantic Artifacts. During context retrieval, AutoCodeRover

e�ectively navigates through the codebase by visiting code entities

such as classes and methods. The idea of utilizing code-speci�c

structure for context retrieval can be taken further by considering

artifacts from program semantics. For example, from an initial set

of methods identi�ed in the issue description, a static call graph

analysis [36, 37] can be used to collect additional relevant methods

when testcases are absent. There are also potential in integrating a

language server [14] for codebase navigation, so that the context

retrieval agent can perform more code-speci�c actions such as

“jump-to-de�nition” from a method invocation. Finally, one can use

forward data dependence analysis [19] from the methods in the

issue description to search for other relevant methods.

Human Involvement. Currently,AutoCodeRover left all decision-

making processes to its foundation LLM — e.g. deciding context

retrieving locations and whether to terminate the retrieval stage.

However, leaving it to the LLMmay not always be enough. Note that

it is common to have multiple rounds of discussion even between

the project maintainers before a pull request is created. Hence, a

�exible interface and human involvement criteria between human

developers and LLM agents are desired.

8 Threats to Validity

Despite the high e�cacy AutoCodeRover achieved in SWE-bench,

we report a few potential threats to our approach and experiments

and discuss how we addressed them. First, LLM is known for its

randomness to generate di�erent results in di�erent runs, which

may threaten the validity of AutoCodeRover’s performance. We

address this by repeating our main evaluation experiment three

times and releasing a replication package for practitioners. Second,

we consider a task instance in SWE-bench as resolved if the gener-

ated patch passes all the test cases added in the pull request for the

issue. However, this patch may be over�tting. We addressed this

threat by manually verifying whether the patches are semantically

equivalent to developers’ patches among the authors.

9 Perspectives

AI-based software engineering is currently a topic of study among

researchers, innovators, and entrepreneurs. Part of the trigger for

this interest has been provided by e�orts like GitHub Copilot [1] in

the last few years. These e�orts show signi�cant promise in the use

of Large Language Models (LLMs) to automatically generate code.

At the same time, code generated by LLMs may be incorrect [10] or

vulnerable [34]. Thus, we need autonomous processes which allow

for code improvements, such as bug �xes and feature additions.

In this paper, we suggest a LLM-based solutionAutoCodeRover

for autonomous code improvement. The key distinguishing feature

of AutoCodeRover is its conscious attempt to inject a software en-

gineering outlook by integrating (a) use of program representations

such as ASTs instead of �les, (b) iterative code search by exploiting

program structure and (c) use of test-based fault localization when

tests can be constructed. AutoCodeRover shows signi�cant e�-

cacy in terms of solving real-life GitHub issues. AutoCodeRover

shows that relying only on the GitHub issue description to guide

code search for patches / modi�cations can be misleading. From

the point of view of program repair, the toughest challenge lies

in inferring the intent of the developer or the speci�cation. The

outlook of AutoCodeRover is that the developer intent is gleaned

from the project structure for automated program modi�cations.

Today, the code LLMs cannot produce safe and secure codewhich

can be trusted enough to be integrated into real software projects.

There is thus a need to autonomously improve code (both automat-

ically generated and manually written), for which LLMs can play a

role. Future work needs to focus further on the appropriate points

when tools like AutoCodeRover may converse with the human

programmer. Developers may need to shift to playing di�erent roles

at the same time in future software industry - vetting di�erent con-

versations with LLM-based tools like AutoCodeRover to enable

a variety of software engineering activities. This would contrast

with today’s software industry where a person has speci�c roles like

programmer/tester/architect/requirements-engineer. Thus, apart

from full-stack engineers, we may see more full-lifecycle software

engineers in the future, who are comfortable working with the entire

lifecycle of (the components of) a software system. Furthermore,

the focus of LLM-oriented work�ows is on scale today. This focus

may shift to the engendering of trust if LLM-oriented autonomous

software engineering becomes commonplace. Future software en-

gineers may focus more on greater trust, instead of larger scale.

DATA AVAILABILITY

We share full public access to (1) AutoCodeRover’s implementa-

tion, (2) all patches generated during our experiment and conversa-

tion history with LLM, (3) replication scripts for our experiments at

the following website: https://github.com/nus-apr/auto-code-rover.

Acknowledgments

We thank the anonymous reviewers for their suggestions. This work

was partially supported by a Singapore Ministry of Education (MoE)

Tier 3 grant "Automated Program Repair", MOE-MOET32021-0001.

1602

https://github.com/nus-apr/auto-code-rover

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury

References
[1] 2022. GitHub Copilot, your AI pair programmer. https://github.com/features/

copilot/
[2] 2024. AutoCodeRover, Autonomous Software Engineering. Retrieved July 10,

2024 from https://autocoderover.dev/
[3] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. 2007. On the Accuracy

of Spectrum-based Fault Localization. In Testing: Academic and Industrial Confer-
ence Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007).
IEEE, IEEE, 89–98. https://doi.org/10.1109/taic.part.2007.13

[4] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Geta�x:
Learning to �x bugs automatically. Proceedings of the ACM on Programming Lan-
guages 3, OOPSLA (2019), 1–27.

[5] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2021. Fuzzing: Chal-
lenges and Re�ections. IEEE Software 38, 3 (2021).

[6] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security. 2329–2344.

[7] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. Commun. ACM 56, 2 (2013).

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing Large Language Models Trained on Code. arXiv.org abs/2107.03374 (7 2021).
arXiv:2107.03374 https://arxiv.org/abs/2107.03374

[9] Yiu Wai Chow, Luca Di Grazia, and Michael Pradel. 2024. Pyty: Repairing static
type errors in python. In Proceedings of the IEEE/ACM 46th International Confer-
ence on Software Engineering. 1–13.

[10] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated Repair of Programs from Large Language Models.. In
45th IEEE/ACM International Conference on Software Engineering, ICSE 2023, Mel-
bourne, Australia, May 14-20, 2023. IEEE, IEEE, 1469–1481. https://doi.org/10.
1109/icse48619.2023.00128

[11] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: a T5-based automated software vulnerability repair. In Pro-
ceedings of the 30th ACM joint european software engineering conference and
symposium on the foundations of software engineering. 935–947.

[12] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. 2019. Crash-avoiding
program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 8–18.

[13] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62 (11 2019), 56–65. Issue 12.

[14] Nadeeshaan Gunasinghe and Nipuna Marcus. 2021. Language Server Protocol and
Implementation. Springer.

[15] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of Code Lan-
guage Models on Automated Program Repair., In 45th IEEE/ACM International
Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May
14-20, 2023 (Melbourne, Victoria, Australia). International Conference on Software
Engineering, 1430–1442. https://doi.org/10.1109/icse48619.2023.00125

[16] Carlos E. Jimenez, John Yang, AlexanderWettig, Shunyu Yao, Kexin Pei, O�r Press,
and Karthik Narasimhan. 2024. Leaderboard results on SWE-bench. Retrieved
April 8, 2024 from https://www.swebench.com/

[17] Carlos E Jimenez, John Yang, AlexanderWettig, Shunyu Yao, Kexin Pei, O�r Press,
and Karthik R Narasimhan. 2024. SWE-bench: Can Language Models Resolve
Real-world Github Issues?. In The Twelfth International Conference on Learning
Representations. https://openreview.net/forum?id=VTF8yNQM66

[18] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan,
and Alexey Svyatkovskiy. 2023. Infer�x: End-to-end program repair with llms.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 1646–1656.

[19] Wuxia Jin et al. 2024. PyAnalyzer: An E�ective and Practical Approach for De-
pendency Extraction from Python Code. In International Conference on Software
Engineering (ICSE).

[20] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing �eld failures for
in-house debugging. In 2012 34th International Conference on Software Engineering
(ICSE). 474–484. https://doi.org/10.1109/ICSE.2012.6227168

[21] James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th international
conference on Software engineering. 467–477.

[22] Fabian Keller, Lars Grunske, Simon Heiden, Antonio Filieri, Andre van Hoorn,
and David Lo. 2017. A critical evaluation of spectrum-based fault localization
techniques on a large-scale software system. In 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 114–125.

[23] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Martin Monper-
rus, Jacques Klein, and Yves Le Traon. 2019. iFixR: Bug report driven program
repair. In Proceedings of the 2019 27th ACM joint meeting on european software
engineering conference and symposium on the foundations of software engineering.
314–325.

[24] Cognition Labs. 2024. Devin, AI software engineer. Retrieved April 12, 2024
from https://www.cognition-labs.com/introducing-devin

[25] Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin,
Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov,
James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-
Level Code Generation with AlphaCode. Science abs/2203.07814, 6624 (12 2022),
1092–1097. https://doi.org/10.48550/arxiv.2203.07814

[26] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models us-
ing ensemble for program repair., In ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,
2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). International Symposium
on Software Testing and Analysis, 101–114.

[27] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. Sap�x: Automated end-to-
end repair at scale. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 269–278.

[28] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: scalable
multiline program patch synthesis via symbolic analysis., In Proceedings of the
38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie Williams (Eds.).
International Conference on Software Engineering, 691–701.

[29] Manish Motwani and Yuriy Brun. 2023. Better automatic program repair by using
bug reports and tests together. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 1225–1237.

[30] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: program repair via semantic analysis., In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013 (San Francisco, CA, USA), David Notkin, Betty H. C. Cheng, and
Klaus Pohl (Eds.). International Conference on Software Engineering, 772–781.
https://doi.org/10.1109/icse.2013.6606623

[31] Yannic Noller, Ridwan Shari�deen, Xiang Gao, and Abhik Roychoudhury. 2022.
Trust Enhancement Issues in Program Repair. In IEEE/ACM 44th International
Conference on Software Engineering (ICSE).

[32] Brayan Stiven Torrres Ovalle. 2023. GitHub Copilot. https://doi.org/10.26507/
paper.2300

[33] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan
Dolan-Gavitt. 2023. Examining zero-shot vulnerability repair with large language
models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2339–2356.

[34] H Pearce, B Tan, B Ahmad, R Karri, and B Dolan-Gavitt. 2023. Examining zero-
shot vulnerability repair with large language models. In IEEE Symposium on
Security and Privacy (SP).

[35] Julian Aron Prenner, Hlib Babii, and Romain Robbes. 2022. Can OpenAI’s codex
�x bugs? an evaluation on QuixBugs. In Proceedings of the Third International
Workshop on Automated Program Repair. 69–75.

[36] Barbara G Ryder. 1979. Constructing the call graph of a program. IEEE Transac-
tions on Software Engineering 3 (1979), 216–226.

[37] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and Dim-
itris Mitropoulos. 2021. Pycg: Practical call graph generation in python. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
1646–1657.

[38] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? over�tting in automated program repair., In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, Elisabetta Di
Nitto, Mark Harman, and Patrick Heymans (Eds.). ESEC/SIGSOFT FSE, 532–543.
http://people.cs.umass.edu/%7Ebrun/pubs/pubs/Smith15fse.pdf

[39] Shin Hwei Tan, Ziqiang Li, and Lu Yan. 2024. CrossFix: Resolution of GitHub is-
sues via similar bugs recommendation. Journal of Software: Evolution and Process
36, 4 (2024), e2554.

[40] The Cognition Team. 2024. SWE-bench technical report (Devin). Retrieved April
12, 2024 from https://www.cognition-labs.com/post/swe-bench-technical-report

[41] WeishiWang, YueWang, Sha�q Joty, and Steven CHHoi. 2023. Rap-gen: Retrieval-
augmented patch generation with codet5 for automatic program repair. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 146–158.

1603

https://github.com/features/copilot/
https://github.com/features/copilot/
https://autocoderover.dev/
https://doi.org/10.1109/taic.part.2007.13
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/icse48619.2023.00128
https://doi.org/10.1109/icse48619.2023.00128
https://doi.org/10.1109/icse48619.2023.00125
https://www.swebench.com/
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1109/ICSE.2012.6227168
https://www.cognition-labs.com/introducing-devin
https://doi.org/10.48550/arxiv.2203.07814
https://doi.org/10.1109/icse.2013.6606623
https://doi.org/10.26507/paper.2300
https://doi.org/10.26507/paper.2300
http://people.cs.umass.edu/%7Ebrun/pubs/pubs/Smith15fse.pdf
https://www.cognition-labs.com/post/swe-bench-technical-report

AutoCodeRover: Autonomous Program Improvement ISSTA ’24, September 16–20, 2024, Vienna, Austria

[42] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically �nding patches using genetic programming., In 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver,
Canada, Proceedings. 2009 IEEE 31st International Conference on Software Engi-
neering, 364–374. https://doi.org/10.1109/icse.2009.5070536

[43] David Williams, James Callan, Serkan Kirbas, Sergey Mechtaev, Justyna Petke,
Thomas Prideaux-Ghee, and Federica Sarro. 2023. User-Centric Deployment of
Automated Program Repair at Bloomberg. arXiv preprint arXiv:2311.10516 (2023).

[44] WEWong, R Gao, Y Li, R Abreu, and F Wotawa. 2016. A survey on software fault
localization. IEEE Transactions on Software Engineering (2016), 707–740. Issue 8.

[45] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[46] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated pro-
gram repair in the era of large pre-trained language models. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 1482–1494.

[47] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao,
Karthik Narasimhan, and O�r Press. 2024. SWE-agent: Agent-Computer In-
terfaces Enable Automated Software Engineering. arXiv:2405.15793 [cs.SE]

[48] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair.,
In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Athens, Greece,
August 23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and
Massimiliano Di Penta (Eds.). ESEC/SIGSOFT FSE, 341–353. https://arxiv.org/
pdf/2106.08253

Received 2024-04-12; accepted 2024-07-03

1604

https://doi.org/10.1109/icse.2009.5070536
https://arxiv.org/abs/2405.15793
https://arxiv.org/pdf/2106.08253
https://arxiv.org/pdf/2106.08253

	Abstract
	1 Beyond Automatic Programming
	2 Relevant Literature
	2.1 Program Repair
	2.2 LLM Agents for SE and Dataset

	3 Motivating Example
	4 AI Program Improvement Framework
	4.1 Overview
	4.2 Context Retrieval APIs
	4.3 Stratified Context Search
	4.4 Analysis-Augmented Context Retrieval
	4.5 Patch Generation

	5 Experiment Setup
	6 Evaluation
	6.1 RQ1: Overall Effectiveness
	6.2 RQ2: Effect of SBFL
	6.3 RQ3: Challenges on real-life tasks

	7 Discussion on Experiments and Improvements
	8 Threats to Validity
	9 Perspectives
	Acknowledgments
	References

